
AD-A250 105

WRDC-TR-90-8007
Volume III
Part 1

INTEGRATED INFORMATION SUPPORT SYSTEM (TISS)
Volume III - Configuration Management

* Part 1 - Quality Assurance Plan

M. Foster

Control Data Corporation
integration Technology Services
2970 Presidential Drive
Fairborn, OH 45324-6209

DTIC
September 1990 7 39

A

; 'nai Report for P:.o1 April 1987 - .31DrI

:'Op(.~dfor PI"'bli c Rias;Dist ribut ion iF, Uni m

92



NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.

Ihis report i s eIe sabL a b , t i , CI. L Gild[ .ril'1 i

I nfto r mat ion 'er v c i h I I . A tN ~j , , t '
availabie to the general publi , 1ncu inq 1or?.d :lutioi

DA D L. J S N, Pr ect Manager DATE

Wri ht-Pat trs AFB, OH 45433-6533

FOR THE COMMANDER:

"BRUCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our .ailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILA9ILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
0AP620320000 WRDC-TR-90-8007 Vol. III, Part I

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City.State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

:0. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include curity Classification) 78011 F 595600 F95600 20950607
See Block 19 78011F 595600 F95600 20950607

12. PERSONAL AUTHOR(S)
Control Data Corporation: Foster, M.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 14/1/87-12/31/90 990 September 30 20

16. SUPPLEMENTARY NOTATION

WRDC/MTI Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.
13Ut$ -U05-

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This document establishes the quality assurance standards and procedures to be applied for IISS software and documentation
development, update, and test through 30 September 1990.

Block 11 - INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Vol III - Configuration Management
Part I - Quality Assurance Plan

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL

(Include Area Code)
David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE



QAP620320000
30 September 1990

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

iii



QAP620320000
30 September 1990

Arizona State University Responsible for test bed operations
and support.

I

iv



QAP620320000

30 September 1990

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION ............................... 1-1
1.1 Quality Assurance ................. 1-1
1.2 Quality Assurance Planning .................. 1-1

SECTION 2. ASPECTS OF QUALITY ASSURANCE .................. 2-1
2.1 Scope ..................................... 2-1
2.2 Approach to Software Quality Assurance .... 2-1
2.2.1 Software Quality and Quality Factors .... 2-1
2.2.2 Quality Criteria ....................... 2-5
2.2.3 Quality Standards and Software Metrics'' 2-7
2.3 Approach to Software Configuration

Management ................. 2-8
2.4 Approach to Documentation and Life

Cycle Activities ........................ 2-9
2.5 Approach to System Testing .............. 2-10
2.5.1 System Test Plans ....................... 2-10
2.5.2 System Testing Issues ..................... 2-12

SECTION 3. REFERENCE DOCUMENTS ........................ 3-1
3.1 Software Guidelines ...................... 3-1
3.2 Software Configuration Management......... 3-1
3.3 Documentation Guidelines .................... 3-2
3.4 Administrative Guidelines ................... 3-2
3.5 Testing Guidelines ....................... 3-2
3.6 Life Cycle Activities ....................... 3-2

Accesion For
NTIS CRA&I _

D1iC IAi-

.justif icatioutI

By ...........................-

Dist

Av

v2



QAP620320000
30 September 1990

LIST OF ILLUSTRATIONS

Figure Title PASe

2-1 Hierarchy of Software Quality Concepts ............ 2-2
2-2 Definitions of Quality Factors .................... 2-4
2-3 Definitions of Selected Quality Criteria .......... 2-6
2-4 Association of Selected Quality Criteria to

Quality Factors .. .................................. 2-7

vi



QAP620320000
30 September 1990

SECTION 1

INTRODUCTION

1.1 Quality Assurance

Any project large or small throughout its life cycle requires
standards and quidelines to assure production and release
compatibility, the efficient coordination of individual efforts,
and the verification of correct performance. The application of
these standards and guidelines are imperative for the Integrated
Information Support System (IISS) software project with its
composition of multi-tasked and multi-layered subsystems and an
application that spans heterogeneous computers and heterogeneous
system environments.

1.2 Quality Assurance Planning

The purpose of this document is to examine in a general way
the major areas of concern that are a part of any quality
assurance Plan and to refer to the specific documents that provide
the quidelines and conventions that were developed for IISS during
the DAPro Project 6203. All specific quality assurance guidelines
were put into specific user manuals to facilitate their
distribution and use by developers and IISS administrators.

1. Software quidelines

2. Software configuration management

3. Documentation quidelines

4. Administrative quidelines

5. Testing quidelines

6. Life cycle activities

i-i



QAP620320000
30 September 1990

SECTION 2

ASPECTS OF QUALITY ASSURANCE

2.1 Scope

Quality assurance provisions should be defined in terms of
software engineering standards, tools, methodologies, procedures,
quidelines and control mechanisms, which in turn define the
software development process. The following discussions involve
software quality, software configuration management, life cycle
activities, and system testing.

2.2 Approach to Software Quality Assurance

Some of the information in this section has been adapted from
Software Quality and Assurance, A Survey, by Thomas J. McCabe &
Associates.

2.2.1 Software Quality and Quality Factors

The purpose of establishing formal software engineering
standards, procedures and control mechanisms is to assure the
production of high quality software. The term "software quality"
involves a hierarchy of definitions as shown in Figure 2-1.

2-1



QAP620320000
30 September 1990

SOFTWARE
QUALITY

Iv

QUALITY
FACTORS

Iv

QUALITY
CRITERIA

V

QUALITYSTANDARDS

Iv

SOFTWARE
METRICS

Figure 2-1. Hierarchy of Software Quality Concepts.

Software quality is first defined in terms of quality
factors. Simply stated, quality factors are desirable
characteristics or attributes associated with a software product.
The restated purpose of establishinng a quality assurance program,
therefore, is to instill the likelihood that important quality
factors characterize all the software products software
engineering methodologies, tools, procedures, standards and
quidelines for ensuring that important quality factors are present
within all software products.

These are quality factor examples:

1. Maintainability
2. Flexibility
3. Reliability
4. Portability
5. Testability

2-2



QAP620320000
30 September 1990

6. Reusability
7. Efficiency
8. Correctness

informal definitions for these quality factors are shown in
Figure 2-2.

QUALITY FACTOR DEFINITION
I I
V V

MAINTAINABILITY HOW EASILY CAN I FIX IT?

FLEXIBILITY ---- HOW EASILY CAN I CHANGE IT?

PORTABILITY ---- HOW EASILY CAN I REHOST IT?

RELIABILITY ---- ACCURATE ALL THE TIME?

TESTABILITY ---- HOW EASILY CAN I TEST IT?

REUSABILITY ---- CAN I REUSE IT?

EFFICIENCY ---- DOES IT OPTIMIZE RESOURCES
(CPU, MEMORY)?

CORRECTNESS ---- DOES IT SATISFY THE SPECS?

INTEGRITY ---- IS IT SECURE?

Figure 2-2. Definitions of Quality Factors.

The establishment of a formal software quality assurance
program in any software development project should begin,
therefore, with an identification of the important quality factors
which contribute to and, in a sense, define what constitutes
quality software for that project.

Quality factors also can be arranged according to their
relative importance to a specific development effort.
Maintainability and flexibility, for example, may be important to
a systems engineering organization interested in marketing
proprietary software packages and tailoring them to a number of
customers each having special site-specific requirements. These

2-3



QAP620320000
30 September 1990

factors, however, pale in importance to correctness and
reliability when a software product on which lives will depend
(e.g., space shuttle software) is being developed.

The meaning of software quality is not static. It varies
depending on the goals of the development organization or the
nature of each specific application or project.

2.2.2 Quality Criteria

Quality factors are in turn defined in terms of quality
criteria which further define and help to establish the presence
of the factor in a software product. Simplicity, modularity and
consistency, for example, are importanat quality criteria for
insuring a high degree of maintainabilty.

Quality criteria are used for determining or judging whether
or not quality factors important to an organization or product are
actually present. A quality criterion, therefore, is not an end
unto itself. Itinstead can be thought of as a means to an end.
Modularity, therefore, is one of possibly several means by which a
high degree of maintainability is achieved.

Simple definitions for specific quality criteria are included
in Figure 2-3. Quality factors and examples of associated quality
criteria are illustrated in Figure 2-4.

2-4



QAP620320000

30 September 1990

QUALITY CRITERIA - DEFINITIONS

MODULARITY PRACTICES INSURING HIERARCHICAL
FRAMEWORK OF HIGHLY INDEPENDENT
MODULES

CONSISTENCY PRACTICES WHICH PROMOTE UNIFORMITY
OF DESIGN, PROGRAMMING AND
DOCUMENTATION

SIMPLICITY PRACTICES WHICH PROMOTE
UNDERSTANDABILITY, AVOIDANCE OF
COMPLEXITY AND PROGRAMMING "TRICKS"

EXECUTION PRACTICES WHICH ATTEMPT TO MINIMIZE
EFFICIENCY CPU USE, DISK ACCESSES, ETC.

STORAGE ---- PRACTICES WHICH ATTEMPT TO MINIMIZE
EFFICIENCY STORAGE REQUIREMENTS

SOFTWARE SYSTEM PRACTICES WHICH MINIMIZE
INDEPENDENCE DEPENDENCE ON OPERATING ENVIRONMENT

MACHINE PROVISIONS FOR ELIMINATING SOFTWARE
INDEPENDENCE DEPENDENCE ON HARDWARE

EXPANDABILITY ---- PRACTICES WHICH READILY ENABLE
EXPANSION OF DATA RESOURCES

INSTRUMENTATION PRACTICES WHICH PROVIDE MEASURMENT
OF USAGE OR ERROR IDENTIFICATION

ACCURACY PROVISIONS FOR PRECISION IN
CALCULATIONS AND DISPLAYS

TRACEABILITY PRACTICES INSURING THREAD FROM
REQUIREMENTS TO IMPLEMENTATION

Figure 2-3. Definitions of Selected Quality Criteria.

2-5



QAP620320000
30 September 1990

QUALITY FACTORS
QUALITY
CRITERIA MAINT FLEX RELIAB TEST REUSE EFFIC CORREC

MODULARITY X X X X

CONSISTENCY X X X X

SIMPLICITY X X X X

EXECUTION X
EFFICIENCY

STORAGE X
EFFICIENCY

SOFTWARE X
SYSTEM
INDEPENDENCE

MACHINE X
INDEPENDENCE

EXPAND- X
ABILITY

INSTRUMENT- X

ATION

ACCURACY X

TRACEABILITY X

Figure 2-4. Association of Selected Quality Criteria
to Quality Factors

2.2.3 Quality Standards and Software Metrics

Quality standards then are established for defining the
criteria further. A standard may be defined as an agreed upon
convention or rule associated with a specific software development
activity. For example, formally documented standards addressing
the issue of how to comment COBOL source code, when combined,
serve as a possible category of programming standards.

Standards and guidelines ultimately can be identified for
development activities within all life cycle phases. Standards
should be associated with one or more qualiity criteria which in
effect become the reasons for the stanaard.

2-6



QAP620320000
30 September 1990

These are examples of standards that can be established for
achieving the criterion of simplicity of design and
implementation:

1. The total number of procedural statements in each source
program will not exceed 75.

2. The number of subroutine calls in any module will not
exceed six.

3. No module will be designed to include more than a single
iteration (REPEAT-UNTIL, DO-WHILE, PERFORM-UNTIL, etc.). If the
need arises for nested iterations, the innermost iteration must be
implemented in a subroutine call.

After standards are in place for criteria, software metrics
then can be calculated for the purpose of quantifying the degree
to which software modules comply with the standards. A possible
metric that can be defined for each these three examples simply is
the percentage of modules which comply with the standards; the
following formula defines this metric:

# modules which violate the rule
metric = 1 -

total # of modules

The software metric for simplicity, i.e., an aggreqate metric
for the entire criteria, can be the average of the metrics for
each of these three example standards.

To summarize, each quality factor, e.g., maintainability, is
defined in terms of a number of criteria, e.g., simplicity,
modularity, consistency, etc.. Each criterion is defined further
in terms of standards. Software modules must be checked to
determine which modules violate which standards. Metrics then can
be calculated for quantifying software quality.

2.3 Approach to Software Configuration Management

A software configuration management system provides the
mechanisms and controls for managing software. It minimallly must
manage the following software mechanisms and controls:

1. Secure storage of tested source code.

2. Change procedures for source code, protecting against
concurrent updates and the loss of previous versions.

3. Creation of system releases throughout the development
phases and the software maintenance phase.

4. Creation of development and testing environments,
including specifications for object and include libraries.

2-7



QAP620320000
30 September 1990

Software configuration management systems may include a
problem reporting service, which may be used for assigning
problems to developers. This service may be used to document
changes in the source code.

A good software configuration management system provides
efficient automated procedures for compiling and linking code.
These procedures may be used only during periodic releases of the
software, or they may be available to developers for their
development testing.

If the software is to be used on more than one computer,
there must be provisions to handle generic code modules and system
dependent modules. These provisions will encompass all aspects of
software configuration management, including the storage of the
source code and the management of releases.

2.4 Approach to Documentation and Life Cycle Activities

A quality software project progresses through various phases
and steps, which define the appropriate activities for its life
cycle. At each step in the life cycle, there are appropriate
documents to be produced. The following items represent the major
phases and steps of a project:

1. Understand the problem.

a. Needs analysis
b. Requirements definition

2. Formulate and justify the solution.
a. Preliminary design
b. Detailed design

3. Construct and integrate the solution.

a. Construction and verification testing
b. Integration and validation testing

4. Implement and maintain the solution.

a. Implement and user acceptance
b. Maintenance and support

The major objective of phase one is to identify the
improvement concepts required for satisfying contractual
objectives. High level system requirements for the new software
system must be identified. System-level requirements are to
include performance objectives, design constraints, etc. In
addition, there should be a clear identification of major
hardware, software, and organizational elements of the overall
system to be developed (i.e., the "to be" system).

2-8



QAP620320000
30 September 1990

Phase two begins with identifying subsystems and their
interfaces and ends with completed designs for each subsystem, the
following items should be included in the design effort:

a. A structural representation (structure charts) of the
framework of software modules required to implement the solution.

b. Procedural descriptions (pseudo code) identifying logic
and algorythmic details associated with complex modules identified
on the structural charts.

c. Unit/integration test specifications identifying test
objectives, required data, test tools, and expected results.

Phase three involves the translation of structure charts,
pseudo code, screen formats, and data base design into validated
software fulfilling the functional requirements of each of the
subsystems. Unit testing and integration testing also is
performed during this phase. Integration testing also includes
testing procedures for verifying proper integration and
coordination of subsystems.

Phase four is a product maintainance phase while the software
is being used by customers. This likely will include customizing
the software for various users. A special release-specific
document must be provided to handle customizing and similar type
problems so to prevent overloading user manuals with information
oriented to singular user types. It particularly is important
during this phase to have an efficient software configuration
management system in place to manage the various releases.

2.5 Approach to System Testing

2.5.1 System Test Plans

Successful unit/integration testing of each individual
subsystem does not by itself provide sufficient confidence of
overall product integrity. Inevitable refinement and modification
of functional requirements and information requirements during the
course of the developement process requires that comprehensive
system-level testing also be performed.

Satisfactory completion of the implementation phase of all
subsystems, therefore, is followed by formal system testing. The
primary intent of system testing is to verify that all subsystems
function cooperatively as an integrated product. System testing
insures proper coordination, information flow, and integration
between all major subsystems within the overall system.

Depending on the nature of the development effort, other
system-level quality issues also are verified during this phase,
including the following type tests:

1. Recovery testing

2-9



QAP620320000
30 September 1990

2. Background testing

3. Stress testing

4. Performance testing

Recovery testing pertains to evaluating system recovery
procedures (e.g., rollforward of data base after-images following
a hardware failure and restart of transactions that were running
at the time of the crash). Where appropriate, system test plans
should include adequate provisions for demonstrating recovery
capability and recovery procedures.

Background testing involves loading the system with a
reasonable (normal) load to observe overall system performance.
Load can be generated via a load generator (hardware/software
combination) which is external to the system. Background testing
provides a mechanism for evaluating two important areas:

a. Observing if system or performance parameters are
properly set and

b. Detecting problems unrelated to a single transaction but
rather to concurrent execution or interaction among a number of
transactions (e.g., reentrancy problems, problems with concurrent
access to the data base, etc.).

Stress testing provides an abnormally high load which causes
system resources (buffers, concurrent tasks, etc.) to become
overloaded. Stress testing is a strategy for testing the upper
limits of resource capability.

Performance testing normally is carried out to demonstrate
that performance constraints as specified in preliminary and
detailed design documentation are being satisfied. Performance
objectives should be documented clearly and developers should have
a realistic plan for demonstrating and measuring performance
characteristics.

The system test plan should be independently produced. The
system test plan covers requirements explicitly traceable to
functional and information requirements stated in preliminary
desivn documentation and derived requirements not explicitly
specified.

The actual system test is jointly carried out by developers
and independent system test personnel.

The development of system test plans normally is initiated
during the preliminary design phase. User's manuals and subsystem
requirements specifications are prerequisites for development of
system test plans.

2-10



QAP620320000
30 September 1990

The following items define the contents of a typical software

system test plan:

1. Explanation of test design standards and conventions.

2. Provisions for performance testing, background testing,
stress testing, and recovery testing.

3. Descriptions of specific test cases if test demonstrates
an exercising of the system's total functionality; otherwise, test
cases should be defined within a combined description, such as a
regression test script file and its function.

4. Order of test execution, especially if there are test
dependencies.

5. Procedures for conducting test types, i.e., installation
test, regression testing, etc.

6. Descriptions of test data and data base load programs;
the description should include what test type uses them.

7. Hardware requirements.

8. Applicable test tools (hardware and software).

2.5.2 System Testing Issues

1. SYSTEM-LEVEL TEST CASES

All test cases identified for system testing should be
functional rather than structural. Structural path testing is
performed during unit/integration testing. System testing should
adopt the user's point of view. Each transaction is thought of as
a black box. Each test case emphasizes a variation of external
input to the transaction.

2. SYNTAX TESTING

For each external input of each transaction (e.g., a specific
input field identified on a screen format for a transaction), a
sufficient number of test cases should be identified to assure
that the transaction is properly reacting to legal and illegal
input syntax. Syntax testing is extremely important. A
determination of whether or not sufficient test cases have been
identified to satisfy the need for adequate syntax testing depends
on the nature of the application.

2-11



QAP620320000
30 September 1990

3. SEMANTIC TESTING

For each external input of each transaction, a sufficient
number of functional test cases should be identified to assure
that a transaction is properly reacting to the semantic content of
external input. Like syntax testing, semantic testing also is
important because of its immediate visibility to users.

Like syntax testing, a determination of whether or not
sufficient test cases have been identified to satisfy the need for
semantic testing also depends on the nature of the application and
is negotiable. For numerical input values, however, a sufficient
number of test cases should be identified to cover crucial input
values such as extremes (min, max, min+l, max+l) and excluded
values.

4. TRACEABILITY

System testing verifies the correctness of the system in
terms of the functional specification portrayed in subsystem
requirements specifications and user manuals. Expected results ol
test cases as formally documented in the test plan should he
traceable to functional documentation.

2-12



QAP620320000
30 September 1990

SECTION 3

REFERENCE DOCUMENTS

This section provides brief descriptions of the contents of
relevant documents. The DAPro 6203 documents are all part of the
Final Technical Report.

3.1 Software Guidelines

UM 620324000 - Software Development Guidelines

General programming quidelines. Programming standards
for COBOL, FORTRAN, and C, including templates. IISS
error handling philosophy.

3.2 Software Configuration Management

DS 620324000 - SCM Development Specification

The functional requirements of Software Comnfiguration
Management. The user and administrative modules and
their relationships and purposes. The database files
used and their purposes.

CMU620324100 - SCM User's Manual

Overview of the user functions for accessing source code
that is in SCM, for entering source code into SCM, and
for modifying source code in SCM. Specific instructions
for each user function. IISS subdirectories and common
object libraries. Supplements providing lists of IISS
source code with all SCM attributes.

CMA620324000 - SCM Administrator's Manual

SCM directories with their purposes. Updating the SCM
database. Specific VAX release procedures. Specific
IBM release procedures.

OM 620324001 - VAX Installation Guide

Steps for installing or building IISS on a VAX from a
VAX IISS release magnetic tape.

OM 620324002 - IBM Installation Guide

Steps for installing or building IISS on an IBM from an
IBM IISS release magnetic tape.

3-1



QAP620320000
30 September 1990

3.3 Documentation Guidelines

IDS150120000C - ICAM Documentation Standards

ICAM life cycle. Documentation standards and formats.

UM 620325000 - DM User's Manual

Functions and structure of documentation management.
Steps for using the documentation management functions.

SUM620325000 - FAD Administrator's Guide

Explanation of how the Fully Automated Documentation
system works to electronically produce most of the text
for a product specification document. The steps for
using FAD.

3.4 Administrative Guidelines

SUM6203200000 - System Administrator's Guide

Instructions for adding new users, assigning privileges
and quotas, and doing backups.

3.5 Testing Guidelines

STP620340000 - System Test Plan

Defines the release software and documentation required
from development for integration and syster-level
testing; defines the criteria to be used to qualify the
software system for release; defines the test types to
be performed and the methodology to be used; defines the
test environment, and provides the integration test
schedules to be followed from code cutoff to product
release.

STR620340000 - System Test Report

Actual detailed results of the complete integration and
testing of a software product release. Included are a
summary and an analysis of the integration and test
activities, a summary of errors reported, resolved, and
remaining outstanding, and a list of cautions and
recommendations.

3.6 Life Cycle Activities

IDS15012000C - ICAM Documentation Standards

ICAM life cycle. Documentation standards and formats.

3-2 *u.s. GOVER WNT PRINTING OFFICE: 1992 - 648-127/6271(r


